Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Mol Autism ; 15(1): 15, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570867

RESUMO

BACKGROUND: Clinicians diagnosing autism rely on diagnostic criteria and instruments in combination with an implicit knowledge based on clinical expertise of the specific signs and presentations associated with the condition. This implicit knowledge influences how diagnostic criteria are interpreted, but it cannot be directly observed. Instead, insight into clinicians' understanding of autism can be gained by investigating their diagnostic certainty. Modest correlations between the certainty of an autism diagnosis and symptom load have been previously reported. Here, we investigated the associations of diagnostic certainty with specific items of the ADOS as well as other clinical features including head circumference. METHODS: Phenotypic data from the Simons Simplex Collection was used to investigate clinical correlates of diagnostic certainty in individuals diagnosed with Autistic Disorder (n = 1511, age 4 to 18 years). Participants were stratified by the ADOS module used to evaluate them. We investigated how diagnostic certainty was associated with total ADOS scores, age, and ADOS module. We calculated the odds-ratios of being diagnosed with the highest possible certainty given the presence or absence of different signs during the ADOS evaluation. Associations between diagnostic certainty and other cognitive and clinical variables were also assessed. RESULTS: In each ADOS module, some items showed a larger association with diagnostic certainty than others. Head circumference was significantly higher for individuals with the highest certainty rating across all three ADOS modules. In turn, head circumference was positively correlated with some of the ADOS items that were associated with diagnostic certainty, and was negatively correlated with verbal/nonverbal IQ ratio among those assessed with ADOS module 2. LIMITATIONS: The investigated cohort was heterogeneous, e.g. in terms of age, IQ, language level, and total ADOS score, which could impede the identification of associations that only exist in a subgroup of the population. The variability of the certainty ratings in the sample was low, limiting the power to identify potential associations with other variables. Additionally, the scoring of diagnostic certainty may vary between clinicians. CONCLUSION: Some ADOS items may better capture the signs that are most associated with clinicians' implicit knowledge of Autistic Disorder. If replicated in future studies, new diagnostic instruments with differentiated weighting of signs may be needed to better reflect this, possibly resulting in better specificity in standardized assessments.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Adolescente , Pré-Escolar , Transtorno Autístico/diagnóstico , Idioma , Transtorno do Espectro Autista/diagnóstico
2.
J Autism Dev Disord ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653851

RESUMO

The purpose of this paper was to examine the physical, emotional, social and school functioning domains of quality of life of individuals with Fragile X Syndrome, in relation to mental health and sleep patterns to gain a better understanding of how these aspects are affected by the disorder. This study included 119 individuals with Fragile X Syndrome who were given different cognitive examinations by a neuropsychologist or by parent-proxy questionnaires. This study focused on the Pediatric Quality of Life Inventory (PedsQoL), the Anxiety, Depression and Mood Scale (ADAMS), the Children's Sleep Habits Questionnaire (CSHQ), but did include other cognitive tests (Vineland Adaptive Behaviour Scales, Nonverbal IQ, Autism Diagnostic Observation Schedule). We identified significant associations between decreases in emotional, social and school domains of PedsQoL and the ADAMS subtests of Generalized Anxiety, Manic/Hyperactivity and Obsessive/Compulsivity, with the subtest of Depressed Mood having associations with lower physical and emotional domains. We also identified a significant impact between CSHQ subtests of Sleep Anxiety, Night Wakings, Daytime Sleepiness, and Parasomnia with the emotional and school domains of PedsQoL. There were associations connecting school functioning with Bedtime Resistance, and additional associations connecting emotional functioning with Sleep Duration and Sleep Onset Delay. Physical functioning was also associated with Sleep Anxiety. Our study shows how mental health and sleep defects impact improper sleep patterns and mental health which leads to decreases in the quality of life for individuals with FXS, and how it is important to screen for these symptoms in order to alleviate issues.

4.
Transl Psychiatry ; 14(1): 171, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555309

RESUMO

There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Esquizofrenia , Humanos , Transtorno Depressivo Maior/genética , Transtorno do Espectro Autista/genética , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Transtorno Bipolar/genética , Transtorno Bipolar/epidemiologia , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia
5.
Nat Commun ; 15(1): 2639, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531844

RESUMO

Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Humanos , Lateralidade Funcional , Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética
6.
Cell Stem Cell ; 31(3): 421-432.e8, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38382530

RESUMO

Thalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders. We investigated early stages of human thalamus development using human pluripotent stem cell-derived organoids and show that the 22q11.2 microdeletion underlies widespread transcriptional dysregulation associated with psychiatric disorders in thalamic neurons and glia, including elevated expression of FOXP2. Using an organoid co-culture model, we demonstrate that the 22q11.2 microdeletion mediates an overgrowth of thalamic axons in a FOXP2-dependent manner. Finally, we identify ROBO2 as a candidate molecular mediator of the effects of FOXP2 overexpression on thalamic axon overgrowth. Together, our study suggests that early steps in thalamic development are dysregulated in a model of genetic risk for schizophrenia and contribute to neural phenotypes in 22q11.2 deletion syndrome.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/psicologia , Fenótipo
7.
Transl Psychiatry ; 14(1): 95, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355713

RESUMO

Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.


Assuntos
Transtorno do Espectro Autista , Substância Branca , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Deleção Cromossômica , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA
8.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Facies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
9.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076919

RESUMO

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

10.
Cells ; 12(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508583

RESUMO

This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Fenótipo , Biomarcadores , RNA Mensageiro/metabolismo
11.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37434504

RESUMO

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Esquizofrenia , Masculino , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Variações do Número de Cópias de DNA/genética , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/genética , Genômica
12.
Nat Neurosci ; 26(7): 1208-1217, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365313

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by heterogeneous cognitive, behavioral and communication impairments. Disruption of the gut-brain axis (GBA) has been implicated in ASD although with limited reproducibility across studies. In this study, we developed a Bayesian differential ranking algorithm to identify ASD-associated molecular and taxa profiles across 10 cross-sectional microbiome datasets and 15 other datasets, including dietary patterns, metabolomics, cytokine profiles and human brain gene expression profiles. We found a functional architecture along the GBA that correlates with heterogeneity of ASD phenotypes, and it is characterized by ASD-associated amino acid, carbohydrate and lipid profiles predominantly encoded by microbial species in the genera Prevotella, Bifidobacterium, Desulfovibrio and Bacteroides and correlates with brain gene expression changes, restrictive dietary patterns and pro-inflammatory cytokine profiles. The functional architecture revealed in age-matched and sex-matched cohorts is not present in sibling-matched cohorts. We also show a strong association between temporal changes in microbiome composition and ASD phenotypes. In summary, we propose a framework to leverage multi-omic datasets from well-defined cohorts and investigate how the GBA influences ASD.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Eixo Encéfalo-Intestino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Estudos Transversais , Teorema de Bayes , Reprodutibilidade dos Testes , Citocinas
13.
Nat Med ; 29(7): 1671-1680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365347

RESUMO

While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Fenótipo , Heterozigoto , Encéfalo
14.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131672

RESUMO

Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.

15.
Hum Mol Genet ; 32(22): 3123-3134, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166351

RESUMO

Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.


Assuntos
Cromatina , Transtornos do Neurodesenvolvimento , Humanos , Cromatina/genética , Metilação de DNA/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética , Códon
16.
Neurosci Biobehav Rev ; 150: 105201, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116771

RESUMO

Diagnostic criteria used in autism research have undergone a shift towards the inclusion of a larger population, paralleled by increasing, but variable, estimates of autism prevalence across clinical settings and continents. A categorical diagnosis of autism spectrum disorder is now consistent with large variations in language, intelligence, comorbidity, and severity, leading to a heterogeneous sample of individuals, increasingly distant from the initial prototypical descriptions. We review the history of autism diagnosis and subtyping, and the evidence of heterogeneity in autism at the cognitive, neurological, and genetic levels. We describe two strategies to address the problem of heterogeneity: clustering, and truncated-compartmentalized enrollment strategy based on prototype recognition. The advances made using clustering methods have been modest. We present an alternative, new strategy for dissecting autism heterogeneity, emphasizing incorporation of prototypical samples in research cohorts, comparison of subgroups defined by specific ranges of values for the clinical specifiers, and retesting the generality of neurobiological results considered to be acquired from the entire autism spectrum on prototypical cohorts defined by narrow specifiers values.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/epidemiologia , Neuroimagem/métodos , Comorbidade , Reconhecimento Psicológico
17.
Adv Genet (Hoboken) ; 4(1): 2200012, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36910592

RESUMO

In sudden unexplained death in pediatrics (SUDP) the cause of death is unknown despite an autopsy and investigation. The role of copy number variations (CNVs) in SUDP has not been well-studied. Chromosomal microarray (CMA) data are generated for 116 SUDP cases with age at death between 1 and 28 months. CNVs are classified using the American College of Medical Genetics and Genomics guidelines and CNVs in our cohort are compared to an autism spectrum disorder (ASD) cohort, and to a control cohort. Pathogenic CNVs are identified in 5 of 116 cases (4.3%). Variants of uncertain significance (VUS) favoring pathogenic CNVs are identified in 9 cases (7.8%). Several CNVs are associated with neurodevelopmental phenotypes including seizures, ASD, developmental delay, and schizophrenia. The structural variant 47,XXY is identified in two cases (2/69 boys, 2.9%) not previously diagnosed with Klinefelter syndrome. Pathogenicity scores for deletions are significantly elevated in the SUDP cohort versus controls (p = 0.007) and are not significantly different from the ASD cohort. The finding of pathogenic or VUS favoring pathogenic CNVs, or structural variants, in 12.1% of cases, combined with the observation of higher pathogenicity scores for deletions in SUDP versus controls, suggests that CMA should be included in the genetic evaluation of SUDP.

18.
Nat Hum Behav ; 7(6): 1001-1017, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36864136

RESUMO

Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Encéfalo/diagnóstico por imagem
19.
medRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865328

RESUMO

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

20.
Mol Psychiatry ; 28(4): 1480-1493, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737482

RESUMO

Copy number variants (CNVs) are deletions and duplications of DNA sequence. The most frequently studied CNVs, which are described in this review, are recurrent CNVs that occur in the same locations on the genome. These CNVs have been strongly implicated in neurodevelopmental disorders, namely autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay (DD), but also in schizophrenia. More recent work has also shown that CNVs increase risk for other psychiatric disorders, namely, depression, bipolar disorder, and post-traumatic stress disorder. Many of the same CNVs are implicated across all of these disorders, and these neuropsychiatric CNVs are also associated with cognitive ability in the general population, as well as with structural and functional brain alterations. Neuropsychiatric CNVs also show incomplete penetrance, such that carriers do not always develop any psychiatric disorder, and may show only mild symptoms, if any. Variable expressivity, whereby the same CNVs are associated with many different phenotypes of varied severity, also points to highly complex mechanisms underlying disease risk in CNV carriers. Comprehensive and longitudinal phenotyping studies of individual CNVs have provided initial insights into these mechanisms. However, more work is needed to estimate and predict the effect of non-recurrent, ultra-rare CNVs, which also contribute to psychiatric and cognitive outcomes. Moreover, delineating the broader phenotypic landscape of neuropsychiatric CNVs in both clinical and general population cohorts may also offer important mechanistic insights.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Esquizofrenia , Humanos , Variações do Número de Cópias de DNA/genética , Transtorno do Espectro Autista/genética , Esquizofrenia/genética , Deficiência Intelectual/genética , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...